extension | φ:Q→Aut N | d | ρ | Label | ID |
C24⋊1D6 = C24⋊D6 | φ: D6/C1 → D6 ⊆ Aut C24 | 8 | 6+ | C2^4:1D6 | 192,955 |
C24⋊2D6 = D4×S4 | φ: D6/C1 → D6 ⊆ Aut C24 | 12 | 6+ | C2^4:2D6 | 192,1472 |
C24⋊3D6 = C2×A4⋊D4 | φ: D6/C2 → S3 ⊆ Aut C24 | 24 | | C2^4:3D6 | 192,1488 |
C24⋊4D6 = C23×S4 | φ: D6/C2 → S3 ⊆ Aut C24 | 24 | | C2^4:4D6 | 192,1537 |
C24⋊5D6 = C2×C22⋊S4 | φ: D6/C2 → S3 ⊆ Aut C24 | 12 | 6+ | C2^4:5D6 | 192,1538 |
C24⋊6D6 = C24⋊6D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 24 | 4 | C2^4:6D6 | 192,591 |
C24⋊7D6 = C24⋊7D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4:7D6 | 192,1148 |
C24⋊8D6 = C24⋊8D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4:8D6 | 192,1149 |
C24⋊9D6 = C24⋊9D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4:9D6 | 192,1153 |
C24⋊10D6 = C2×C23⋊2D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4:10D6 | 192,1358 |
C24⋊11D6 = D4×C3⋊D4 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4:11D6 | 192,1360 |
C24⋊12D6 = C24⋊12D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4:12D6 | 192,1363 |
C24⋊13D6 = C2×D4⋊6D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4:13D6 | 192,1516 |
C24⋊14D6 = S3×C22≀C2 | φ: D6/S3 → C2 ⊆ Aut C24 | 24 | | C2^4:14D6 | 192,1147 |
C24⋊15D6 = C22×S3×D4 | φ: D6/S3 → C2 ⊆ Aut C24 | 48 | | C2^4:15D6 | 192,1514 |
C24⋊16D6 = C2×C24⋊4S3 | φ: D6/C6 → C2 ⊆ Aut C24 | 48 | | C2^4:16D6 | 192,1399 |
C24⋊17D6 = C23×C3⋊D4 | φ: D6/C6 → C2 ⊆ Aut C24 | 96 | | C2^4:17D6 | 192,1529 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
C24.D6 = D4⋊2S4 | φ: D6/C1 → D6 ⊆ Aut C24 | 24 | 6 | C2^4.D6 | 192,1473 |
C24.2D6 = C4×A4⋊C4 | φ: D6/C2 → S3 ⊆ Aut C24 | 48 | | C2^4.2D6 | 192,969 |
C24.3D6 = C24.3D6 | φ: D6/C2 → S3 ⊆ Aut C24 | 48 | | C2^4.3D6 | 192,970 |
C24.4D6 = C24.4D6 | φ: D6/C2 → S3 ⊆ Aut C24 | 48 | | C2^4.4D6 | 192,971 |
C24.5D6 = C24.5D6 | φ: D6/C2 → S3 ⊆ Aut C24 | 24 | | C2^4.5D6 | 192,972 |
C24.6D6 = C25.S3 | φ: D6/C2 → S3 ⊆ Aut C24 | 24 | | C2^4.6D6 | 192,991 |
C24.7D6 = C2×A4⋊Q8 | φ: D6/C2 → S3 ⊆ Aut C24 | 48 | | C2^4.7D6 | 192,1468 |
C24.8D6 = C2×C4×S4 | φ: D6/C2 → S3 ⊆ Aut C24 | 24 | | C2^4.8D6 | 192,1469 |
C24.9D6 = C2×C4⋊S4 | φ: D6/C2 → S3 ⊆ Aut C24 | 24 | | C2^4.9D6 | 192,1470 |
C24.10D6 = C24.10D6 | φ: D6/C2 → S3 ⊆ Aut C24 | 24 | 6 | C2^4.10D6 | 192,1471 |
C24.11D6 = C22×A4⋊C4 | φ: D6/C2 → S3 ⊆ Aut C24 | 48 | | C2^4.11D6 | 192,1487 |
C24.12D6 = C24.12D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4.12D6 | 192,85 |
C24.13D6 = C24.13D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4.13D6 | 192,86 |
C24.14D6 = C24.14D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.14D6 | 192,503 |
C24.15D6 = C24.15D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.15D6 | 192,504 |
C24.16D6 = C23⋊2Dic6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.16D6 | 192,506 |
C24.17D6 = C24.17D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.17D6 | 192,507 |
C24.18D6 = C24.18D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.18D6 | 192,508 |
C24.19D6 = C24.19D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.19D6 | 192,510 |
C24.20D6 = C24.20D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.20D6 | 192,511 |
C24.21D6 = C24.21D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.21D6 | 192,512 |
C24.22D6 = C2×C23.6D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4.22D6 | 192,513 |
C24.23D6 = C24.23D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.23D6 | 192,515 |
C24.24D6 = C24.24D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.24D6 | 192,516 |
C24.25D6 = C24.25D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.25D6 | 192,518 |
C24.26D6 = C23⋊3D12 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.26D6 | 192,519 |
C24.27D6 = C24.27D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.27D6 | 192,520 |
C24.28D6 = C2×C23.7D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4.28D6 | 192,778 |
C24.29D6 = C24.29D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.29D6 | 192,779 |
C24.30D6 = C24.30D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.30D6 | 192,780 |
C24.31D6 = C24.31D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.31D6 | 192,781 |
C24.32D6 = C24.32D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.32D6 | 192,782 |
C24.33D6 = C2×C23.8D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.33D6 | 192,1041 |
C24.34D6 = C23⋊3Dic6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4.34D6 | 192,1042 |
C24.35D6 = C24.35D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4.35D6 | 192,1045 |
C24.36D6 = C2×C23.9D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.36D6 | 192,1047 |
C24.37D6 = C2×Dic3⋊D4 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.37D6 | 192,1048 |
C24.38D6 = C24.38D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4.38D6 | 192,1049 |
C24.39D6 = C2×C23.11D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.39D6 | 192,1050 |
C24.40D6 = C23⋊4D12 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4.40D6 | 192,1052 |
C24.41D6 = C24.41D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4.41D6 | 192,1053 |
C24.42D6 = C24.42D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4.42D6 | 192,1054 |
C24.43D6 = C24.43D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4.43D6 | 192,1146 |
C24.44D6 = C24.44D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4.44D6 | 192,1150 |
C24.45D6 = C24.45D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4.45D6 | 192,1151 |
C24.46D6 = C24.46D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4.46D6 | 192,1152 |
C24.47D6 = C24.47D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4.47D6 | 192,1154 |
C24.48D6 = C2×C23.12D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.48D6 | 192,1356 |
C24.49D6 = C24.49D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4.49D6 | 192,1357 |
C24.50D6 = C2×D6⋊3D4 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.50D6 | 192,1359 |
C24.51D6 = C2×C12⋊3D4 | φ: D6/C3 → C22 ⊆ Aut C24 | 96 | | C2^4.51D6 | 192,1362 |
C24.52D6 = C24.52D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4.52D6 | 192,1364 |
C24.53D6 = C24.53D6 | φ: D6/C3 → C22 ⊆ Aut C24 | 48 | | C2^4.53D6 | 192,1365 |
C24.54D6 = Dic3×C22⋊C4 | φ: D6/S3 → C2 ⊆ Aut C24 | 96 | | C2^4.54D6 | 192,500 |
C24.55D6 = C24.55D6 | φ: D6/S3 → C2 ⊆ Aut C24 | 96 | | C2^4.55D6 | 192,501 |
C24.56D6 = C24.56D6 | φ: D6/S3 → C2 ⊆ Aut C24 | 96 | | C2^4.56D6 | 192,502 |
C24.57D6 = C24.57D6 | φ: D6/S3 → C2 ⊆ Aut C24 | 96 | | C2^4.57D6 | 192,505 |
C24.58D6 = C24.58D6 | φ: D6/S3 → C2 ⊆ Aut C24 | 96 | | C2^4.58D6 | 192,509 |
C24.59D6 = C24.59D6 | φ: D6/S3 → C2 ⊆ Aut C24 | 48 | | C2^4.59D6 | 192,514 |
C24.60D6 = C24.60D6 | φ: D6/S3 → C2 ⊆ Aut C24 | 96 | | C2^4.60D6 | 192,517 |
C24.61D6 = C2×C23.16D6 | φ: D6/S3 → C2 ⊆ Aut C24 | 96 | | C2^4.61D6 | 192,1039 |
C24.62D6 = C2×Dic3.D4 | φ: D6/S3 → C2 ⊆ Aut C24 | 96 | | C2^4.62D6 | 192,1040 |
C24.63D6 = C2×S3×C22⋊C4 | φ: D6/S3 → C2 ⊆ Aut C24 | 48 | | C2^4.63D6 | 192,1043 |
C24.64D6 = C2×Dic3⋊4D4 | φ: D6/S3 → C2 ⊆ Aut C24 | 96 | | C2^4.64D6 | 192,1044 |
C24.65D6 = C2×D6⋊D4 | φ: D6/S3 → C2 ⊆ Aut C24 | 48 | | C2^4.65D6 | 192,1046 |
C24.66D6 = C2×C23.21D6 | φ: D6/S3 → C2 ⊆ Aut C24 | 96 | | C2^4.66D6 | 192,1051 |
C24.67D6 = C24.67D6 | φ: D6/S3 → C2 ⊆ Aut C24 | 48 | | C2^4.67D6 | 192,1145 |
C24.68D6 = C2×D4×Dic3 | φ: D6/S3 → C2 ⊆ Aut C24 | 96 | | C2^4.68D6 | 192,1354 |
C24.69D6 = C2×C23.23D6 | φ: D6/S3 → C2 ⊆ Aut C24 | 96 | | C2^4.69D6 | 192,1355 |
C24.70D6 = C2×C23.14D6 | φ: D6/S3 → C2 ⊆ Aut C24 | 96 | | C2^4.70D6 | 192,1361 |
C24.71D6 = C22×D4⋊2S3 | φ: D6/S3 → C2 ⊆ Aut C24 | 96 | | C2^4.71D6 | 192,1515 |
C24.72D6 = C4×C6.D4 | φ: D6/C6 → C2 ⊆ Aut C24 | 96 | | C2^4.72D6 | 192,768 |
C24.73D6 = C24.73D6 | φ: D6/C6 → C2 ⊆ Aut C24 | 96 | | C2^4.73D6 | 192,769 |
C24.74D6 = C24.74D6 | φ: D6/C6 → C2 ⊆ Aut C24 | 96 | | C2^4.74D6 | 192,770 |
C24.75D6 = C24.75D6 | φ: D6/C6 → C2 ⊆ Aut C24 | 96 | | C2^4.75D6 | 192,771 |
C24.76D6 = C24.76D6 | φ: D6/C6 → C2 ⊆ Aut C24 | 96 | | C2^4.76D6 | 192,772 |
C24.77D6 = C25.4S3 | φ: D6/C6 → C2 ⊆ Aut C24 | 48 | | C2^4.77D6 | 192,806 |
C24.78D6 = C2×C12.48D4 | φ: D6/C6 → C2 ⊆ Aut C24 | 96 | | C2^4.78D6 | 192,1343 |
C24.79D6 = C2×C23.26D6 | φ: D6/C6 → C2 ⊆ Aut C24 | 96 | | C2^4.79D6 | 192,1345 |
C24.80D6 = C2×C4×C3⋊D4 | φ: D6/C6 → C2 ⊆ Aut C24 | 96 | | C2^4.80D6 | 192,1347 |
C24.81D6 = C2×C23.28D6 | φ: D6/C6 → C2 ⊆ Aut C24 | 96 | | C2^4.81D6 | 192,1348 |
C24.82D6 = C2×C12⋊7D4 | φ: D6/C6 → C2 ⊆ Aut C24 | 96 | | C2^4.82D6 | 192,1349 |
C24.83D6 = C24.83D6 | φ: D6/C6 → C2 ⊆ Aut C24 | 48 | | C2^4.83D6 | 192,1350 |
C24.84D6 = C22×C4○D12 | φ: D6/C6 → C2 ⊆ Aut C24 | 96 | | C2^4.84D6 | 192,1513 |
C24.85D6 = C2×C6.C42 | central extension (φ=1) | 192 | | C2^4.85D6 | 192,767 |
C24.86D6 = Dic3×C22×C4 | central extension (φ=1) | 192 | | C2^4.86D6 | 192,1341 |
C24.87D6 = C22×Dic3⋊C4 | central extension (φ=1) | 192 | | C2^4.87D6 | 192,1342 |
C24.88D6 = C22×C4⋊Dic3 | central extension (φ=1) | 192 | | C2^4.88D6 | 192,1344 |
C24.89D6 = C22×D6⋊C4 | central extension (φ=1) | 96 | | C2^4.89D6 | 192,1346 |
C24.90D6 = C22×C6.D4 | central extension (φ=1) | 96 | | C2^4.90D6 | 192,1398 |
C24.91D6 = C23×Dic6 | central extension (φ=1) | 192 | | C2^4.91D6 | 192,1510 |
C24.92D6 = S3×C23×C4 | central extension (φ=1) | 96 | | C2^4.92D6 | 192,1511 |
C24.93D6 = C23×D12 | central extension (φ=1) | 96 | | C2^4.93D6 | 192,1512 |
C24.94D6 = Dic3×C24 | central extension (φ=1) | 192 | | C2^4.94D6 | 192,1528 |